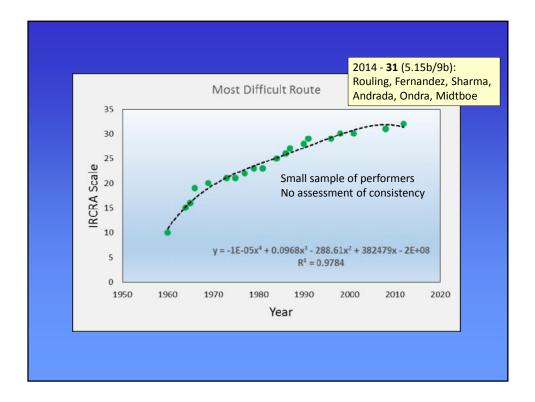
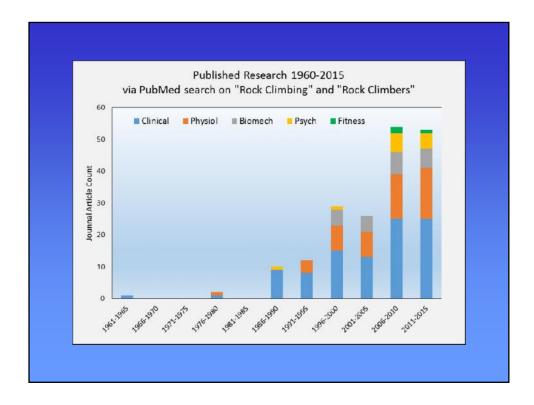
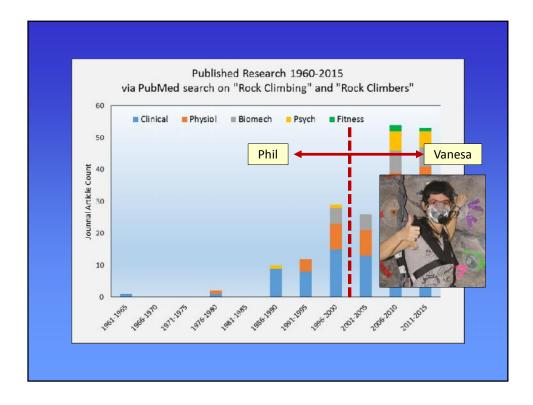
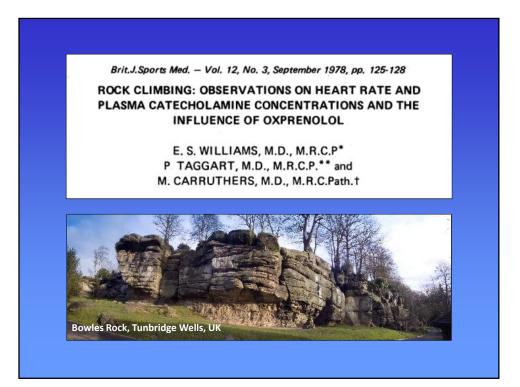
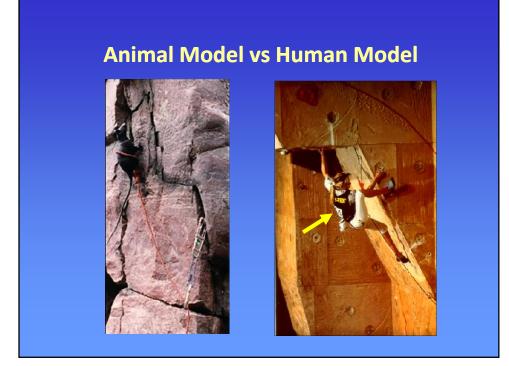

Historical Keynote A Physiological Model for Rock Climbing – The First 2000 Years

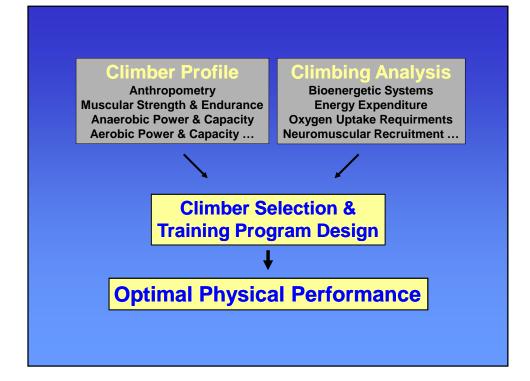


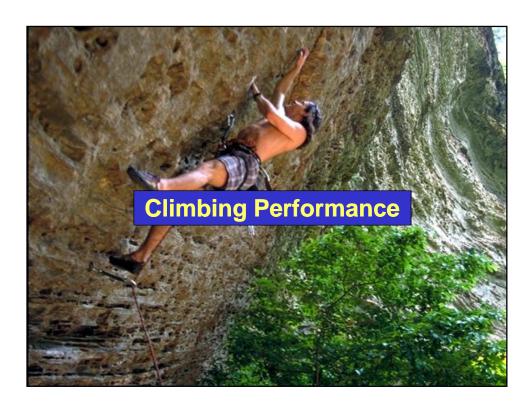

Phillip (Phil) B. Watts, PhD FACSM School of Health & Human Performance Northern Michigan University pwatts@nmu.edu



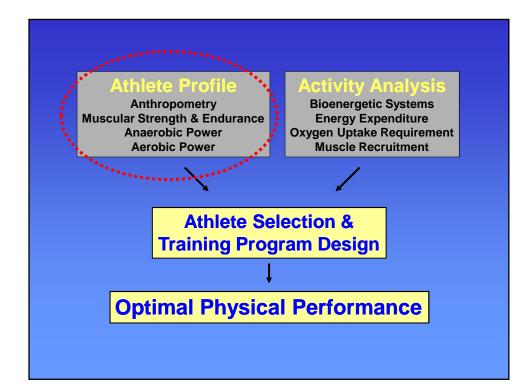

	Climbing Gr	оор	lermin.	Fon	IRCRA Reporting Scale	YDS P	roneh/spor	t Brits	h Tech	Estank	BRZ	UIAA	Metric ULAA	Wints
	16	- 22			1	51	1		2.	4	Loup	Т	1.00	
					2	5.2	2			٥	Ш	п	2.00	
					3	53	2+			8	11 sup		3.00	
	Lewe: Gran	6e :			4	54	3-	10			ш	1111	3.50	
	([exel 1) Male & Fenule			5	5.5				10	TV .	TV TV1	4.13		
		ule			0	56	3)		1	12		1001	4,66	0.00
					7	57	4			14		v	3.00	0.25
				8	5.8	4-				1.200	v.	5.33	0.50	
		VB	<2	9	59	5			16	A sub	VI-	5.00	0.75	
					10	5.10u	5+			18		vī	6.00	1.00
	Inter	mediste	¥0-	3	11	5.10b	64			19	•1	VEI	6.33	1.25
		ord 3)	170	4	12	5.10e	Set		1.11	19	100	VIII-	6.66	1.50
		anate	V0+	4-	13	5.10d	60		1111	20	AI arb	VII	7.00	1.75
	(Lorel 2) Male	8	VI	3	14	5.1%	49+			21	74			2.00
			20.44	5-	15	3.11b	60	T				VD)	7.35	2.25
		V2	68	10	5.110	50+			22	76	VIII-	7.66	2.50	
	Advanced	43	6A 6B	17	5.11d	78			23	76	VIII	8,00	2.75	
	(Lord S) Female	14	6B	18	5.12a	7a i			34	88	VED	8.33	3.00	
ALL			V 5	60	19	5.126	75			25	36			3.25
Seal of C	Advanced		W6	6C- 7A	20	5.12c	7b1			34	Ro	IX-	8.66	3.50
The second second	(1.an		1000	2010	21	5.12d	76			27		1X	9.00	3.75
and the second second		Elite - (Lavel 4) Femsly	¥7	7A- 7B	22	5.13a	7e1			28	36	130	9.35	4.00
			V8	7B-	23	5.136	84			19	90	х-	9.66	4.25
A CONTRACTOR OF			79	22.2	24	5.13c	sia+			30	10a	A-		4.50
ALC: NOT A			10	70	25	5.130	87	71		11	106	×	10.00	4.75
			vп	84	26	5.140	524			12	100	\mathbf{X}^+	18.33	5.00
11 2 2 2 2 2 2			¥12	RA-	27	5.14h	Re			33	Its	XI-	10.66	\$ 35
100 and 100					28	5.140	Sc+			34	115	XI	11.00	5.50
		het Elize	¥13	88	29	5.144	9.8		16	10	II.	A.1	11.01	\$ 75
	11	errel 5) emalo	¥14	8B-	30	5.15u	Ju+			16	12u	X.14	11.33	6.00
	Malo	enno	¥15	8C	31	5.15b	95		100	19	12b	XII-	11.66	6.25
		- 19 S	V16	80-	32	5.150	90+		M	38	120	xII	12.00	



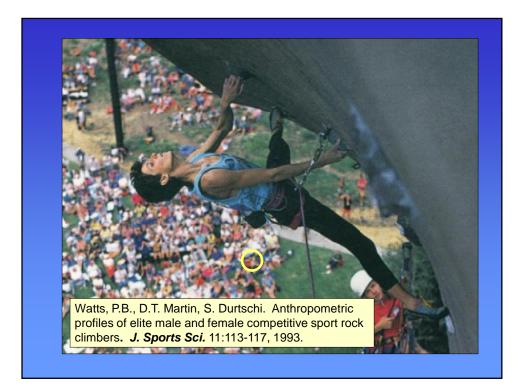

- 11 participants police and rock climbing instructors.
- 2 routes 1 wt oxprenolol + 1 wt placebo
- HRmax wt placebo 166±26, wt oxprenolol 120±10
- Adrenaline increased from 0.05 to 0.33 μg·L⁻¹ wt placebo
- Noradrenaline did not increase.

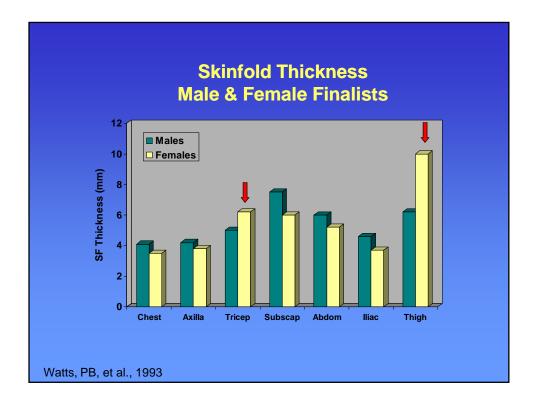

A few quotes:

"... It is concluded that hard rock climbing on small crags is not, of itself, a sport necessarily requiring, or by its practice producing, physical fitness ... it is mainly an emotional rather than physical challenge which is presented by the rock face ... we suggest that the dominant emotion involved in rock climbing is one of fear ... "


"The rock was open, smooth and dripping with rainwater ... (the climbers) engendered considerable anxiety owing to the steepness of the rock face and its slippery nature caused by rain which continued all day."







	M Finalists (n=7)	F Finalists (n=6)
Age (yrs)	23.9±5.2	27.3±1.9
Ability	5.14a / 8c	5.13b / 8a+
Height (cm)	179.3±5.2	162.3±4.6
Body Mass (kg)	62.4±4.5	46.8±4.9
d 7 Skinfolds (mm)	36.3±6.4	36.7±10.5
%Body Fat	4.8±2.3	9.6±1.9
Grip Strength (kg)	48.7±9.1	30.3±3.1
Strength:Mass Ratio	0.78±0.13	0.64±0.04

Results

•Climbers were of small stature with very low skinfold thickness & body fat values.

•Absolute grip strength values were average, however, strength:mass ratio was very high in both males and females.

•Climbing ability could be predicted from strength:mass ratio and %body fat $(r^2=0.33)$.

Watts, PB, et al., 1993

Perceived World Champion Sport Climber	imposed	Commis d BMI (m	t Climbing sion ass/height competition
B	Females	½14 yr 15 16 17 ∫18	16.00 16.25 16.50 16.75 17.00
	Males	½14 yr 15 16 17 ∫18	17.00 17.25 17.50 17.75 18.00

Watts PB, Joubert LM, Lish AK, et al.

Anthropometry of young competitive sport rock climbers. *British Journal* of Sports Medicine. 37:420-424, 2003

90 Climbers 10-18 yrs of age

45 age & gender matched physically active though non-climber Control subjects

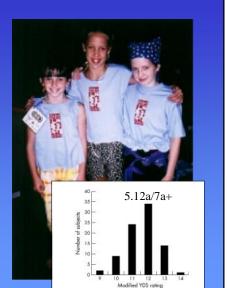


Figure 1 Distribution of climbing ability (n = 90). YDS, Yosen decimal system.

Control vs JCCA Comparisons

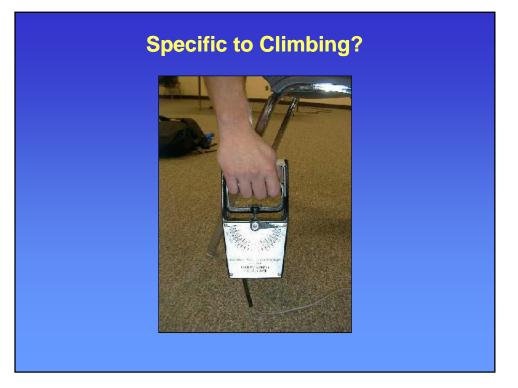
Variable	Control (n=45)	JCCA (n=90)
Age (yrs)	13.7 ±2.7	13.5 ±3.0
Hoight (cm)	167 1 +14 0	158 5 +15 2*
Stature %-tile	79.3 ±25.3	50.0 ±28.7*
Mass %-tile	57.8 ±25.6	39.4 ±23.5*
Ht/Wt Ratio	3.28 ±0.78	3.51 ±0.74*
BMI	19.0 ±3.2	18.6 ±2.3
BMI %-tile	38.7 ±29.7	32.7 ±21.5
"Ape Index"	0.95 ±0.15	1.01 ±0.02*
Bilio/Bicristal	0.74 ±0.05	0.86 ±0.08*
Sum 9 Skinfolds (mm)	101.3 ±45.2	66.5 ±20.5*
Hand+Arm Volume (ml)	1148.9 ±426.8	1116.4 ±345.0
Avg. Handgrip (kg)	30.7 ±13.4	32.8 ±12.8
HG/Mass	0.55 ±0.13	0.67 ±0.12*

Control v	s JCCA Comp	arisons
Variable	Control (n=45)	JCCA (n=90)
Age (yrs)	13.7 ±2.7	13.5 ±3.0
Height (cm)	167.1 ±14.0	158.5 ±15.2*
Stature %-tile	79.3 ±25.3	50.0 ±28.7*
Mass (kg)	54.1 ±15.0	47.8 ±13.4*
Mass %-ile	57.8 ±25.6	39.4 ±23.5*
Ht/Wt Ratio	3.28 ±0.78	3.51 ±0.74 [#]
BMI	19.0 ±3.2	18.6 ±2.3
BMI %-tile	12.6-26.4	14.6–25.6
Ape index	11/45 (24%) below	21/91 (23%) below
Bilio/Bicristal	Austrian "cut-off"	Austrian "cut-off"
Sum 9 Skinfolds (mm)	levels (all <16 yrs).	levels (all <16 yrs).
Hand+Arm Volume (ml)	1148.9 ±426.8	1116.4 ±345.0
Avg. Handgrip (kg)	30.7 ±13.4	32.8 ±12.8
HG/Mass	0.55 ±0.13	0.67 ±0.12*

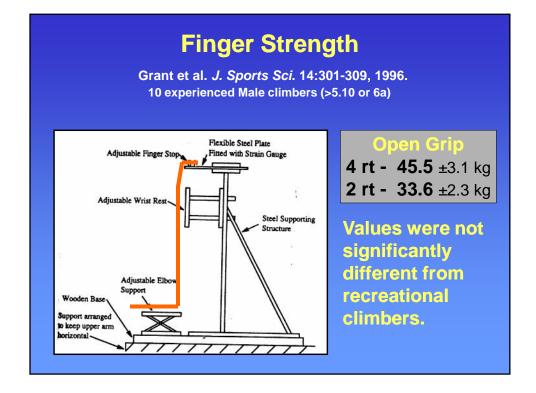
Control vs JCCA Comparisons

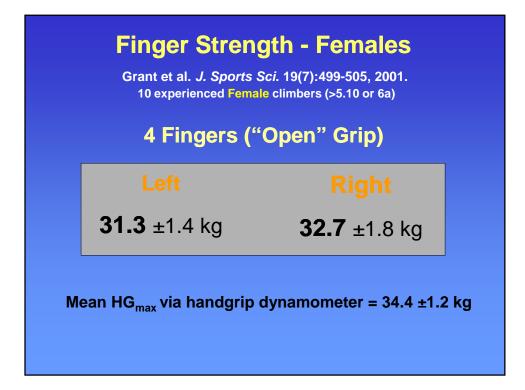
Variable	Control	JCCA
Age (yrs)	13.7 ±2.7	13.5 ±3.0
Height (cm)	167.1 ±14.0	158.5 ±15.2*
Stature %-tile	Although BMI	values did
Mass (kg)	not differ, clim	bers did
Mass %-ile	present a diffe	rent body
Ht/Wt Ratio	composition.	
ВМІ	19.0 ±3.2	18.6 ±2.3
BMI %-tile	38.7 ±29.7	32.7 ±21.5
"Ape Index"	0.95 ±0.15	1.01 ±0.02*
Bilio/Bicristal	0.74 ±0.05	0.86 ±0.08*
Sum 9 Skinfolds (mm)	101.3 ±45.2	66.5 ±20.5*
Hand+Arm Volume (ml)	1148.9 ±426.8	1116.4 ±345.0
Avg. Handgrip (kg)	30.7 ±13.4	32.8 ±12.8
HG/Mass	0.55 ±0.13	0.67 ±0.12*
atts, PB, et al., 2003		

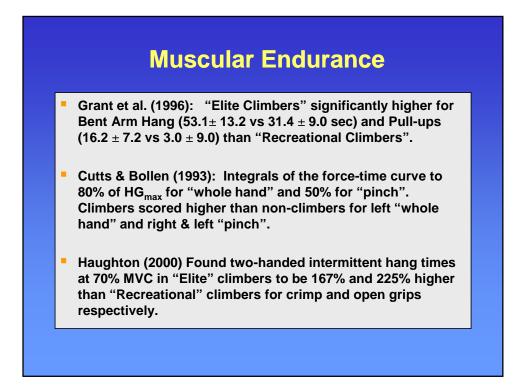
1965	Pat Ament	70.5	150	125 fingertip pull-ups in 5 minutes, etc.
1966	Jack La Lanne	67	175	Held perfect <i>flag</i> lever with 77.75 lbs. tied to his waist.
1969	William D. Reed	?	?	Did a record 106 consecutive pull-ups with both arms.
1978	Jim Holloway	78	165?	Held front lever for at least 20 seconds, perhaps a minute. May be the tallest person ever to do a front lever.
1978	John Curd Edmunds	70.5	167	Did a record 117 consecutive dynamic pull-ups at age 66.
1980	John Bachar	67	175	1 OAP + 12.5 lbs. Two-arm pullup + 138.75 lbs.
1982	Wolfgang Güllich	70	150	One arm pullup on one finger & OAP on small ledge + ?
1985	Milos Snajdr			6 two-arm chins + 120 kg.
2006	Jason Armstrong	74	183	2,409 pull-ups in a 12 hour period.
2007	Guy Schott	68	150	3,116 pull-ups in 91/2 hours.

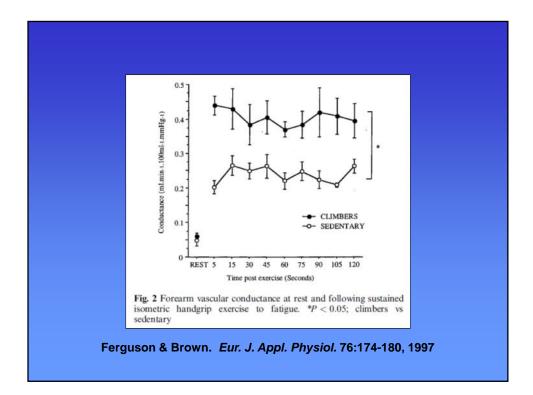

Lillian Leitzel (Lillian Alize Pelikan) Poland 1892

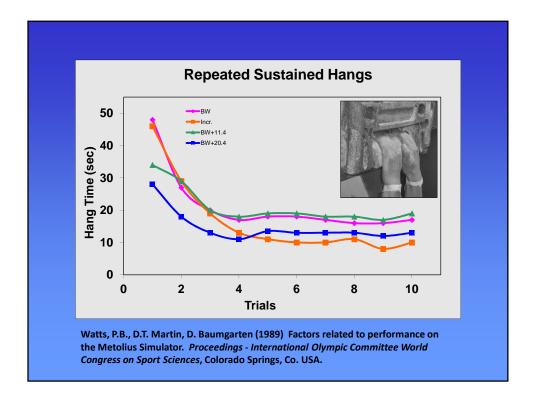
Performed 27 1-arm chins in 1918 as a warm-up for a gymnastics photo session.

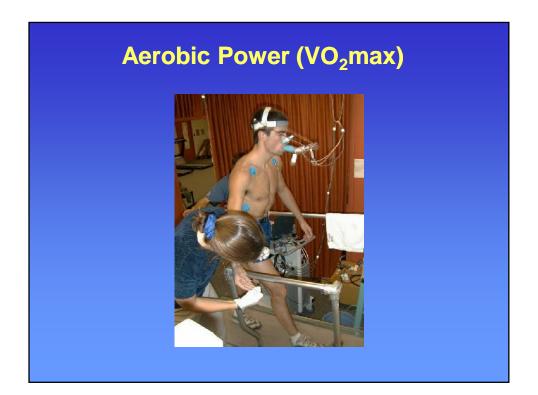



	Study	Subject Ability	Handgrip I Force	Force:Mass Ratio	
Watts (n=21	s et al. (1993) m)	5.13c/8a+	51.6±6.4 kg 50 th %-tile		
Watts (n=18	•		34.2±5.2 kg 75 th %-tile		
	Watts et al. (1996) (n=11m)	5.12a-513d 7b-8b+	59.3±7.1 kg		
	Ferguson & Brown (1997) (n=5m)	5.13b 7a-8a	72.8±3.5 kg	0.77.0.07	
	Watts et al. (1999) (n=15m)	5.12c- 5.14b	51.6±7.5 kg	0.77±0.07	






Muscular Endurance


Ferguson & Brown. Eur. J. Appl. Physiol. 76:174-180, 1997.

Variable	Climbers	Sedentary
HG MVC (kg)	72.9±3.5	64.7±5.6
Isometric 40% MVC (sec)	140±11	122±14
Rhythmic 40% MVC (sec)	853±76*	420±69

Results also indicated an enhanced forearm vasodilator capacity in trained climbers.

Billat, et al. (1995):	
4 "high level" climbers (>5.	12a or 7b ability)
Running VO ₂ max =	54.8 ±5.0 ml·kg ⁻¹ ·min ⁻¹
Arm Pulling $VO_2max =$	22.3 ±2.6 ml·kg ⁻¹ ·min ⁻¹
Wilkins, et al. (1996):	
7 "expert" climbers (>5.12a	a or 7b ability)
Running VO ₂ max =	55.2 ±3.6 ml·kg ⁻¹ ·min ⁻¹
Watts, et al. (1998):	
14 "experienced" climbers (5.8/5b to 5.11c/7a ability)
Running VO ₂ max =	52.0 ±4.7 ml·kg ⁻¹ ·min ⁻¹
Booth, et al. (1999):	
7 "highly skilled" climbers	(6b-7a UK) 43.8±2.2 ml·kg⁻¹·min⁻¹

<image><text>

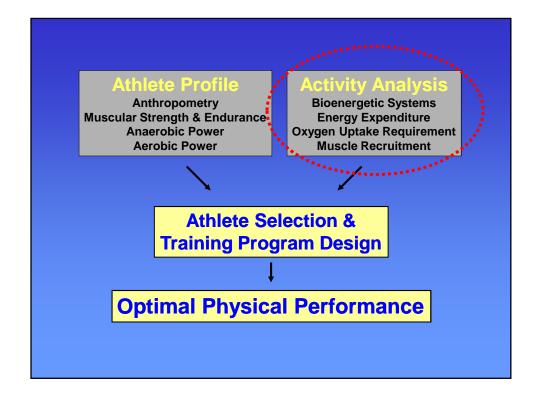
Determinants of Climbing Performance

Mermier, C. et al. *Br. J. Sports Med.* 34:359-366, 2000 *Principle Components Analysis* (2 routes – Moves from 5.7 up to 5.13)

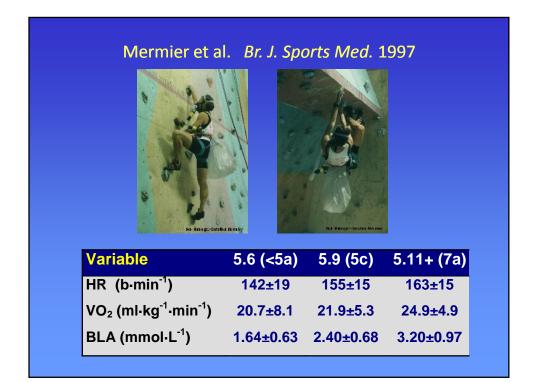
Variable	Men (n=24)	Women	(n=20)
	Mean±SD	Range	Mean±SD	Range
Age	30.4 ±6.0	21.0-45.0	32.2 ±9.2	18.0-49.0
Ability (YDS)	5.10c/12*	5.8-5.13d	5.9/9*	5.6-5.12c
Performance (64 pts =max)	30.62 ±13.6	11.0-59.6	18.96 ±6.4	11.2-36.4

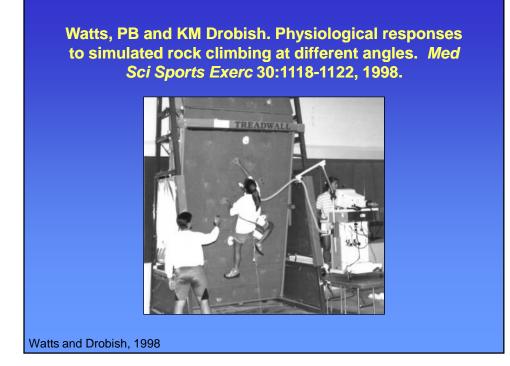
* YDS/IRCRA

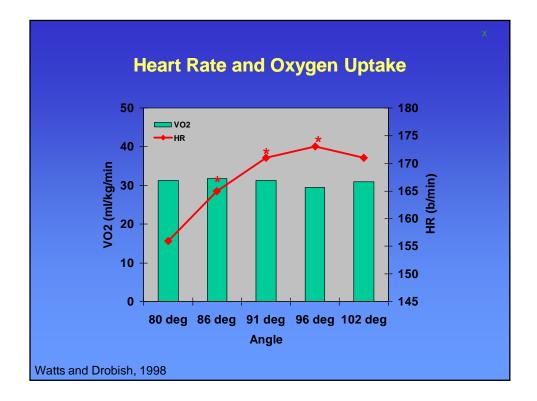
Mermier, C. et al., 2000.

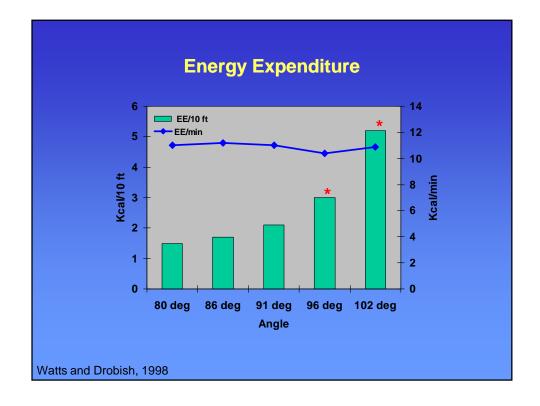

Determinants of Climbing Performance

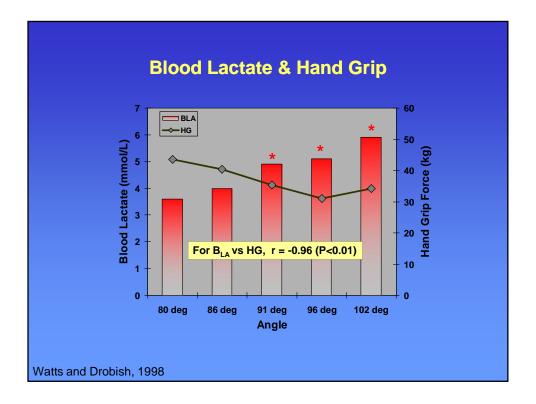
Mermier, C. et al. *Br. J. Sports Med.* 34:359-366, 2000 (2 routes – 63 possible moves at 5.7 up to 5.13)


Component 1 <i>Training</i>	Component 2 Anthropometry	Component 3 <i>Flexibility</i>
Knee Strength	Weight	Hip Flexion
Shoulder Strength	Height	Hip Abduction
Grip Strength	Leg Length	Climbing Experience
Upper Body Power	Arm span	
Lower Body Power	Ape Index	
Hang Time		
Percent Body Fat		
Self-reported Ability		
% of Variance	% of Variance	% of Variance
39.06%	15.35%	10.36%

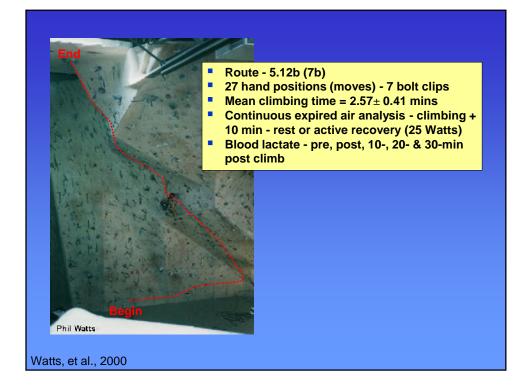

Athlete Profile

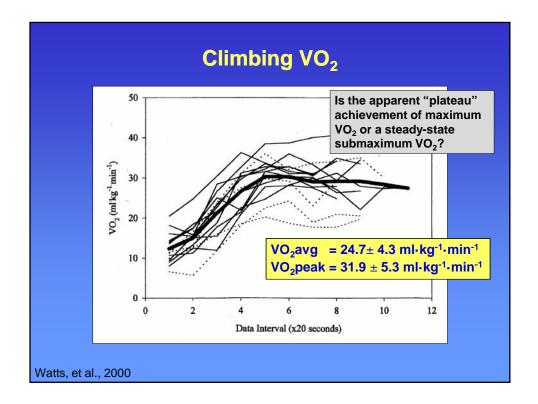

- Small stature and high strength:body mass ratio for grip
- Low percent fat (ÿskinfolds)
- High endurance for static and rhythmic isometric contractions
- High upper body power?
- High hip flexibility (other ROM)?
- Moderate aerobic power (VO₂max)

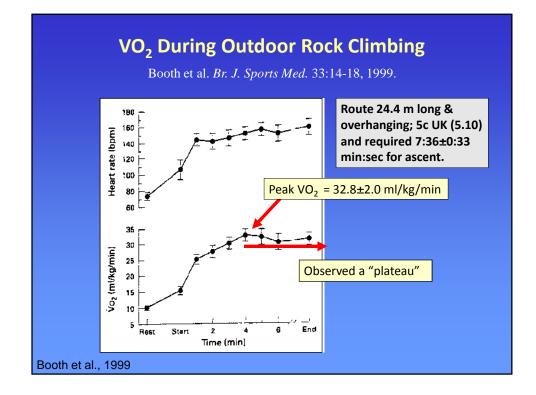


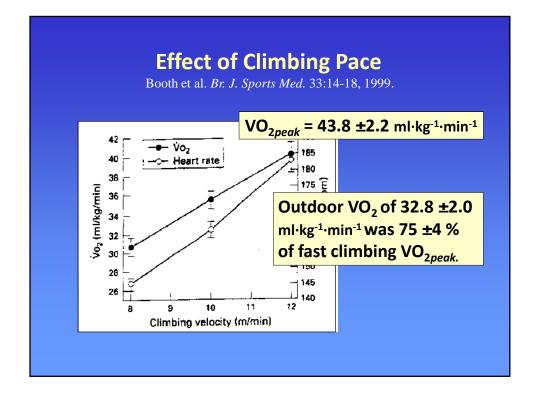

	- Two routes at 5.12 s ranged 3:30 to 4:15	
Variable	Route 1	Route 2
HR (b∙min⁻¹)	176±14	159±15
VO₂peak (ml⋅kg ⁻¹ ⋅min ⁻¹)	24.9±1.2	20.6±0.9
VO₂ %Run max	46.0±4.9	37.5±5.4
VO₂ %Pull max	113±12.6	95.6±6.2
Blood Lactate (mmol·L ⁻¹)	5.75±0.95	4.30±0.77

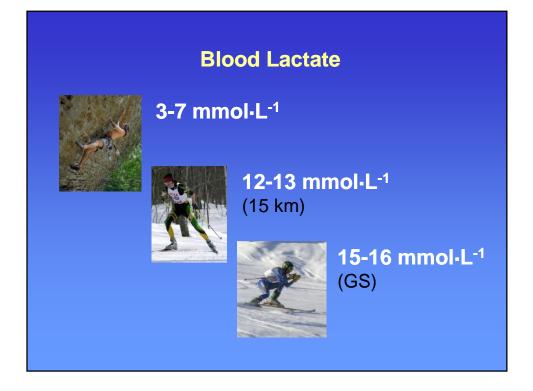


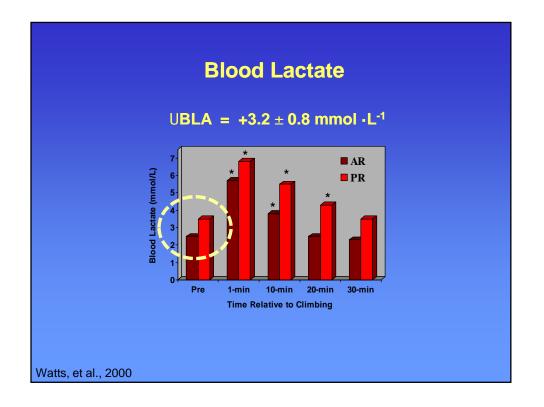


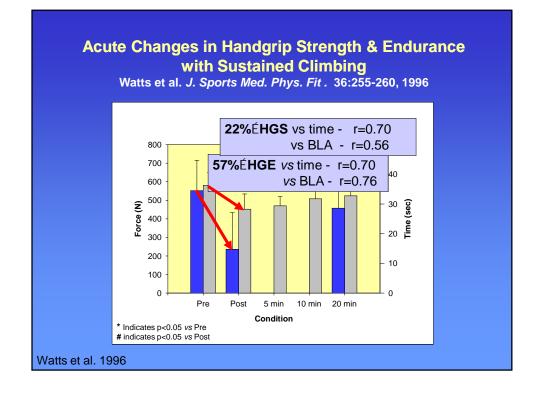


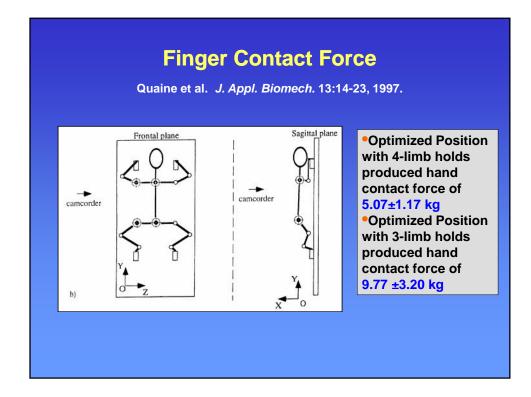


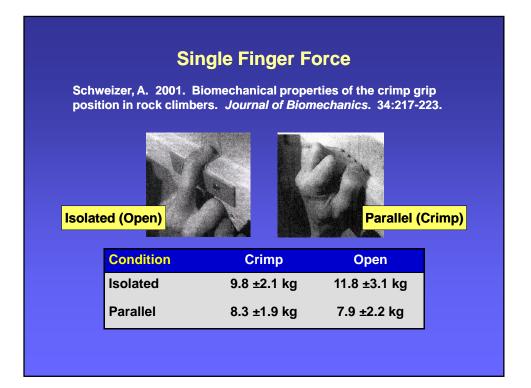


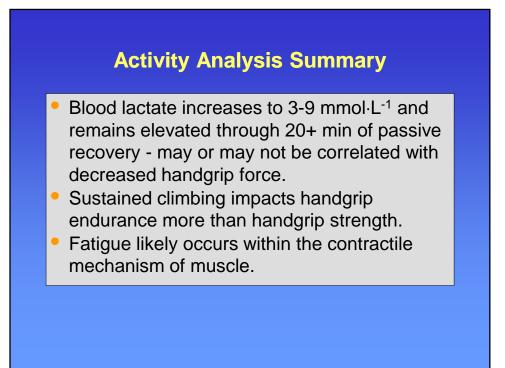


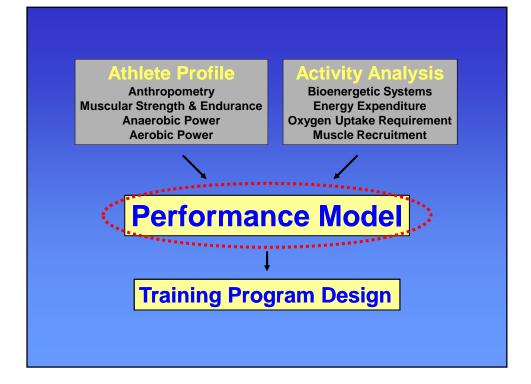


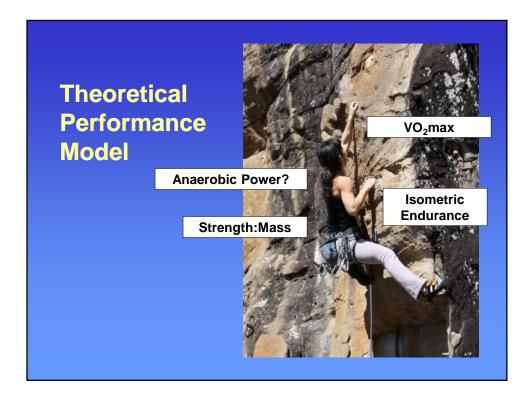


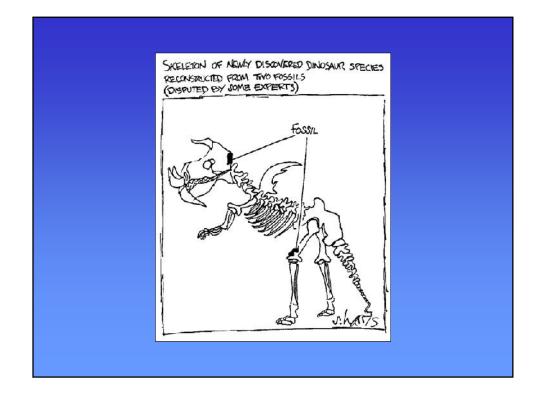

	Summary of Blood Lactate Responses to Climbing				
Reference	Condition	B _{LA} (mmol•L ⁻¹)			
Billat, et al. 1995	3-min post route (5.12a/b)	5.8 ±1.0			
Watts, et al. 1996	1-min post climbing to fall (512.a)	6.1 ±1.4			
Mermier, et al. 1997	1-2 min post indoor route (5.11+)	3.2 ±0.9			
Watts, et al. 1998	1-min post 4-min bout at 102°	5.9 ±1.2			
Booth, et al. 1999	Post outdoor route (05.10)	4.5 ±0.5			
Watts, et al. 2000	1-min post indoor route (5.12b)	6.8 ±1.9			
	(2000) 1-min post l 9 mmol•L ⁻¹ & distan				

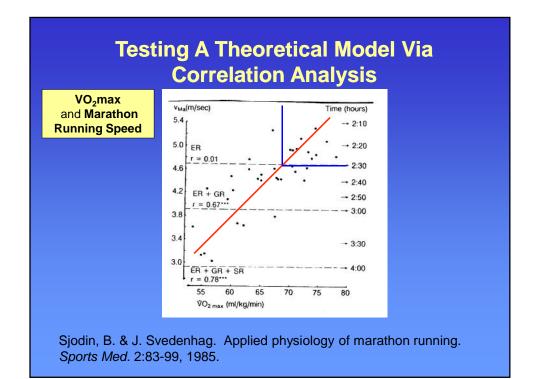


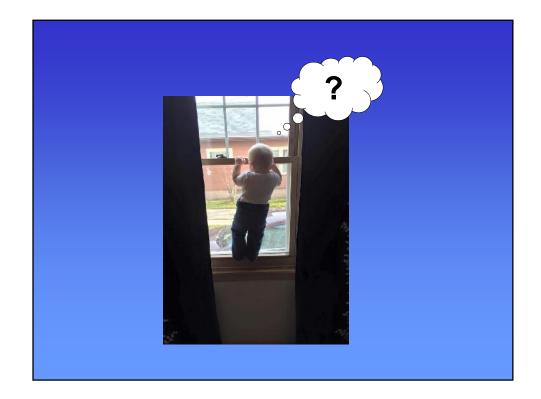







Activity Analysis Summary


- Climbing route ascent times range from 2-7 minutes with ≈38% static.
- VO₂ averages 20-25 ml·kg⁻¹·min⁻¹ with peaks to over 30 ml·kg⁻¹·min⁻¹.
- VO₂ can "plateau" with sustained climbing of >2 min yet remains elevated into recovery.
- Higher VO₂ is possible; >40 ml·kg⁻¹·min⁻¹ with "fast" climbing.
- Energy Expenditure (kcal·min⁻¹) remains constant as angle changes, but EE per distance climbed increases with increasing angle.



In the first 2000 years, no studies tested the Model

> If one trains and increases Strength:Mass Ratio by 10% .. How much does climbing performance change?

Training Program Design

Importance of *Fitness ...* Competition? High volume practice of complex skills?

Contemporary Theoretical Performance Model

Dr. Vanesa España-Romero